MDA financial distress prediction model for selected Balkan countries
Marek Durica
Peter Adamko
Katarina Valaskova
University of Zilina, Faculty of Operation and Economics of Transport and Communications, Zilina, Slovak Republic
DOI: https://doi.org/10.31410/Balkans.JETSS.2018.1.1.85-93
Marek Durica
Peter Adamko
Katarina Valaskova
University of Zilina, Faculty of Operation and Economics of Transport and Communications, Zilina, Slovak Republic
DOI: https://doi.org/10.31410/Balkans.JETSS.2018.1.1.85-93
Balkans Journal of Emerging Trends in Social Sciences, (2018) , Vol 1, No 1
ISSN: 2620-164X
ISSN: 2620-164X
Abstract: The issue of company financial distress and the early prediction of potential bankruptcy is one of the most discussed issues of economists around the world in recent decades. The most widely used method to create these models is Multidimensional Discrimination Analysis from the first attempts in the 1960s to the present. In the paper we present prediction model for some emerging market countries in Balkan region created using a Multidimensional Discriminant Analysis method based on real data from the financial statements obtained from Amadeus - A database of comparable financial information for public and private companies across Europe. Our database contains data more than 200 000 companies and about 25 predictors. Using this model, it is possible to predict the financial difficulties of companies one year in advance.
Keywords: Prediction model, Financial distress, Multidimensional Discrimination Analysis, Prediction ability.
JEL Classifications C52 ∙ C53 ∙ G33
REFERENCES
Keywords: Prediction model, Financial distress, Multidimensional Discrimination Analysis, Prediction ability.
JEL Classifications C52 ∙ C53 ∙ G33
REFERENCES
- Altman, E. I. (1968). Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy. The Journal of Finance, 23(4), 589-609. ISSN 1540-6261. doi: 10.1111/j.1540-6261.1968.tb00843.x
- Altman, E. I., Iwanicz-Drozdowska, M., Laitinen, E. K., Suvas, A. (2016). Financial Distress Prediction in an International Context: A Review and Empirical Analysis of Altman's Z-Score Model. Journal of International Financial Management & Accounting, 28(2), 131-171. doi: 10.1111/jifm.12053
- Bellovary, J. L., Giacomino, D., Akers, M. D. (2007). A Review of Bankruptcy Prediction Studies: 1930 to Present. Journal of Financial Education, 33, 1-43.
- Bonca, P. D., Ponikvar, N., Pusnik, K., Tajnikar, M. (2015). The Role of Management Decision in Explaining Firm Market Exit. E & M Ekonomie a Management, 18(2), 103-116. doi: 10.15240/tul/001/2015-2-008
- Chung, K. Ch., Tan, S. S., Holdsworth, D. K. (2008). Insolvency Prediction Model Using Multivariate Discriminant Analysis and Artificial Neural Network for the Finance Industry in New Zealand. International Journal of Business and Management, 39(1), 19-28.
- Jovanovic, D., Todorovic, M., Grbic, M. (2017). Financial Indicators as Predictors of Illiquidity. Romanian Journal of Economic Forecasting, 20(1), 128-149.
- Kliestikova, J., Misankova, M., Kliestik, T. (2017). Bankruptcy in Slovakia: international comparison of the creditor´s position. Oeconomia Copernicana, 8(2), 221–237. doi: 10.24136/oc.v8i2.14
- Kundid, A., Ercegovac, R. (2011). Credit rationing in financial distress: Croatia SMEs finance approach. International Journal of Law and Management, 53(1), 62-84. doi:10.1108/17542431111111890
- Li, J., Ragozar, R. (2012). Application of the Z -Score Model with Consideration of Total Assets Volatility in Predicting Corporate Financial Failures from 2000-2010. Journal of Accounting and Finance, 12(2), 11-19.
- Obradovic, D. B., Jaksic, D., Rupic, I. B., Andric, M. (2018). Insolvency prediction model of the company: the case of the Republic of Serbia. Economic Research-Ekonomska Istrazivanja, 31(1), 139-157. doi: 10.1080/1331677X.2017.1421990
- Ohlson, J. A. (1980). Financial Ratios and the Probabilistic Prediction of Bankruptcy. Journal of Accounting Research, 18(1), 109-131. ISSN 1475-679X. doi: 10.2307/2490395
- Pervan, I., Pavic, P., Pervan, M. (2014). Firm Financial Distress Prediction with Statistical Methods: Prediction Accuracy Improvements Based on the Financial Data Restatements. Proceedings of 8th International Days of Statistics and Economics, Sep 11-13, 2014, Prague, Czech Republic, pp. 1134-1144.
- Sarlija, N., Jeger, M. (2011). Comparing Financial Distress prediction Models Before and During Recession. Croatian Operational Research Review-Book Series, 2, 133-142.
- Shams, M. F., Sheikhi, M., Sheikhi, Z. (2011). Financial distress prediction: Comparisons of logit models using receiver operating characteristic (ROC) curve analysis. African Journal of Business Management, 5(30), 12164-12173. doi: 10.5897/AJBM11.1969
- Siekelova, A., Kliestik, T., Svabova, L., Androniceanu, A., Schonfeld, J. (2017). Receivables Management: The Importance of Financial Indicators in Assessing the Creditworthiness. Political Journal of Management Studies, 15(2), 217-228. doi: 10.17512/pjms.2017.15.2.20
- Simic, D., Kovacevic, I., Simic, S. (2012). Insolvency prediction for assessing corporate financial health. Logic Journal of the IGPL, 20(3), 536-549. doi: 10.1093/jigpal/jzr009
- Sun, J., Li, H. (2012). Financial distress prediction using support vector machines: ensemble vs. individual. Applied Soft Computing, 12(8), 2254–2265. doi: 10.1016/j.asoc.2012.03.028
- Zidek, L. (2016). Economic Transformation in Slovenia: From a Model Example to the Default Edge. Review of Economic Perspectives, 16(3), 159-186. doi: 10.1515/revecp-2016-0011
- Zikovic, I. T. (2018). Challenges in Predicting Financial Distress in Emerging Economies: The Case of Croatia. Eastern European Economics, 56(1), 1-27. doi: 10.1080/00128775.2017.1387059

balkans_jetss_vol_1_no_1_85-93.pdf | |
File Size: | 93 kb |
File Type: |
Association of Economists and Managers of the Balkans
- UdEkoM Balkan -
179 Ustanicka St, 11000 Belgrade, Republic of Serbia
E-mail: [email protected]
www.udekom.org.rs
- UdEkoM Balkan -
179 Ustanicka St, 11000 Belgrade, Republic of Serbia
E-mail: [email protected]
www.udekom.org.rs
Tel. +381 62 812 5779
VAT number: 108747027
Registration number.: 28157347
Registration number.: 28157347