ASSESSMENT OF FACTORS AFFECTING FINANCIAL PERFORMANCE OF TOURISM COMPANIES IN BIST BY MEANS
OF DATA MINING ALGORITHMS IN FINANCIAL RATIOS
Duygu Arslantürk Çöllü, Assistant Professor
Iğdır University, Faculty of Economics and Administrative Sciences,
Department of Business Administration, Iğdır, Turkey
Ayaz Yusuf Altin, Assistant Professor
Iğdır University, Faculty of Economics and Administrative Sciences,
Department of Business Administration, Iğdır, Turkey
Leyla Akgün, Assistant Professor
Iğdır University, Faculty of Economics and Administrative Sciences,
Department of Business Administration, Iğdır, Turkey
Ecevit Eyduran, Professor
Iğdır University, Faculty of Economics and Administrative Sciences,
Department of Business Administration, Iğdır, Turkey
DOI: https://doi.org/10.31410/tmt.2018.425
OF DATA MINING ALGORITHMS IN FINANCIAL RATIOS
Duygu Arslantürk Çöllü, Assistant Professor
Iğdır University, Faculty of Economics and Administrative Sciences,
Department of Business Administration, Iğdır, Turkey
Ayaz Yusuf Altin, Assistant Professor
Iğdır University, Faculty of Economics and Administrative Sciences,
Department of Business Administration, Iğdır, Turkey
Leyla Akgün, Assistant Professor
Iğdır University, Faculty of Economics and Administrative Sciences,
Department of Business Administration, Iğdır, Turkey
Ecevit Eyduran, Professor
Iğdır University, Faculty of Economics and Administrative Sciences,
Department of Business Administration, Iğdır, Turkey
DOI: https://doi.org/10.31410/tmt.2018.425
3rd International Thematic Monograph - Thematic Proceedings: Modern Management Tools and Economy of Tourism Sector in Present Era, Belgrade, 2018, Published by: Association of Economists and Managers of the Balkans in cooperation with the Faculty of Tourism and Hospitality, Ohrid, Macedonia; ISBN 978-86-80194-14-1; Editors: Vuk Bevanda, associate professor, Faculty of Business Studies, Megatrend University, Belgrade, Serbia; Snežana Štetić, full time professor, The College of Tourism, Belgrade, Serbia
Abstract: The present study was conducted on seven tourism companies in BIST Tourism Index in
order to describe continuous financial factors which affect net profit margin (NPM) as a continuous
response variable through CART (Classification and Regression Tree), CHAID (Chi-Square Automatic
Interaction Detector), Exhaustive CHAID and MARS (Multivariate Adaptive Regression Splines) algorithms.
In the present study, the data of these companies from the period 2011-2017 were evaluated.
Predictive performances of CART, CHAID, Exhaustive CHAID and MARS in predicting NPM were
measured based on model goodness of fit criteria, viz. r (Pearson correlation coefficient between actual
and predicted values in NPM), coefficient of determination (R2), adjusted coefficient of determination
(Adj.R2), standard deviation ratio (SDRATIO), root of mean square error (RMSE), global relative approximation
error (RAE), mean absolute deviation (MAD), Akaike’s information criterion (AIC) and the
corrected Akaike’s information criterion (AICc). In the study, financial factors used in the prediction of
NPM were current ratio (CR), acid-test ratio (ACTR), asset turnover ratio (ASTR), accounts receivable
turnover ratio (ACRTR), equity turnover ratio (EQTR), short term liabilities to total assets ratio (SHTLTAR),
long term liabilities to total assets ratio (LOTLTAR), total assets to equity ratio (TOAER), long
term liabilities to equity ratio (LOLER) and total debt to total assets ratio (TODTAR) as predictors. In
the prediction of the NPM and the description of the influential financial factors influencing the NPM,
the highest predictive accuracy was obtained by MARS algorithm (r=0.980) and the statistically significant
order was found as MARS (r=0.980) > Exhaustive CHAID (r=0.915) = CART (r=0.873) = CHAID
(r=0.868) algorithms.
In conclusion, the achieved results indicated that, i) the regression tree diagram constructed by Exhaustive
CHAID algorithm displayed that tourism companies with LOTLTAR < 0.3715 and EQTR <
0.0311 had the highest average NPM of 2.778, ii) CART tree-based algorithm showed that the companies
with EQTR > - 0.2125 and ASTR < 0.0246 had the highest average NPM of 4.226, iii) the diagram of
CHAID tree-based algorithm revealed that the companies with TODTAR < 0.6145 and EQTR < 0.0311
had the highest NPM with the average of 2.778. It is recommendable that data mining algorithms capture
optimal cut-off values of influential factors, which may ensure the highest NPM values.
Keywords: Tourism companies, financial ratios, data mining algorithms, MARS, BIST
REFERENCES
[1] Aziri, B., Nedelea, A. (2013) Business Strategies in Tourism, Ecoforum, 2(1-2), pp.5-11. Available:
http://www.ecoforumjournal.ro/index.php/eco/article/view/21/12.
[2] Bahar, O., Bozkurt, K. (2010) Gelişmekte Olan Ülkelerde Turizm-Ekonomik Büyüme İlişkisi:
Dinamik Panel Veri Analizi, Anatolia: Turizm Araştırmaları Dergisi, 21 (2), pp.1-11.
[3] Gai, L., Ielasi, F. and Ventisette, E. (2017) Overcoming Borders: a Financial Analysis of Tourism
Sector in Italy, Journal of Economics and Development Studies, 5(4), pp. 17-30.
[4] Çımat, A., Bahar, O., (2003) Turizm Sektörünün Türkiye Ekonomisi İçindeki Yeri ve Önemi
Üzerine Bir Değerlendirme, Akdeniz Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi,
3 (6), 1-18.
[5] Karataş,M., Babür, S. (2013) Gelişen Dünya’da Turizm Sektörünün Yeri, KMÜ Sosyal ve
Ekonomi̇k Araştırmalar Dergi̇si, 15 (25), pp. 15-24.
[6] Ravichandran, M., Subramanian, M. V. (2016) A Study on Financial Performance Analysis of
Force Motors Limited. International Journal for Innovative Research in Science & Technology,
2 (11), pp. 662-666.
[7] Karadeniz, E., Beyazgül, M., Dalak, S. and Günay, F. (2017) Türk Turizm Sektörünün Finansal
Performansının Dikey Analiz Yönteniyle İncelenmesi: BİST Turizm Şirketleri ve TCMB Sektör
Bilançoları Üzerinde Bir Araştırma, Sosyoekonomi Dergisi, 25(32), pp. 105-119.
[8] Dağlı, H. (2013) Finansal Yönetim, Derya Kitabevi, Trabzon, pp.61.
[9] Scmidgall, S. R., Defranco, L. A. (2004) Ratio Analysis: Financial Benchmarks For The Club
İndustry, Journal of Hospitality Financial Management, 12 (1), pp. 1-16.
[10] Subačiene, R., Senkus, K. (2013) Net Profitability Analysis of Travel Organizers and Travel
Agencies, Ekonomika, 92(1), pp. 156-165.
[11] Soba, M., Akcanlı, F. and Erem, I. (2012) İMKB’ye Kayıtlı Seçilmiş İşletmelere Yönelik Etkinlik
Ölçümü ve Performans Değerlendirmesi: Veri Zarflama Analizi ve Topsis Uygulaması,
Selçuk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 27, pp. 229-243.
[12] Gülcü, A., Cenger, H. (2013) İMKB’de İşlem Gören Turizm İşletmelerin Veri Zarflama Analizi
Yöntemiyle Mali Performanslarının Ölçümü ve Benchmarking Uygulaması, International
Journal of Social Science, 6(8), pp. 853-870.
[13] Yakut, E., Harbalıoğlu, M. and Pekkan, N. Ü. (2015) Turizm Sektöründe BIST’a Kayıtlı İşletmelerin
Veri Zarflama Analizi ve Toplam Faktör Verimliliği ile Finansal Performanslarının
İncelenmesi, Journal of Business Research Turk, 7(2), pp. 235-257.
[14] Tarım, Ş., Dener, H. I. and Tarım, A. (2000) Efficiency Measurement in The Hotel Industry:
Output Factor Constrained Dea Application, Anatolia: An International Journal Of Tourism
And Hospitality Research, 11(2), pp. 111–123.
[15] Bach, M. P., Zoroja, J., Jakovic, B. and Sarlija, N. (2017) Selection of Variables For Credit Risk
Data Mining Models: Preliminary Research, 40th International Convention on Information
and Communication Technology, Electronics and Microelectronics (MIPRO), 22-26 May 2017.
[16] Singh, A. J., Schmidgall, R. S. (2002) Analysis Of Financial Ratios Commonly Used, Us Lodging
Financial Executives’, Journal Of Leisure Property, 2(3), pp. 201-213.
[17] Kim, W., B. Ayoun (2005) Ratio Analysis For The Hospitality Industry: A Cross Sector Comparation
of Financial Trends in The Lodging, Restaurant, Airline and Amusement Sectors,
Journal of Hospitality Financial Management, 13(1), pp.1-33.
[18] Kim, D. J. (2006) A Comparative Study of Financial Ratios between Hotels and Restaurants,
International Journal of Tourism Sciences, 6(1), pp. 95-106.
[19] Karadeniz, E., Kahiloğulları, S. (2013) Beş Yıldızlı Otel İşletmelerinde Finansal Oranların
Kullanımı: Akdeniz Bölgesi’nde Bir Araştırma. Seyahat ve Otel İşletmeciliği Dergisi, 10(3),
pp. 84-106.
[20] Ecer, F., Günay, F. (2014) Borsa İstanbul’da İşlem Gören Turizm Şirketlerinin Finansal Performanslarının
Gri İlişkisel Analiz Yöntemiyle Ölçülmesi, Anatolia: Turizm Araştırmaları Dergisi,
25(1), pp. 35-48.
[21] Asdullah, M. A., Rehman, Z. (2015) A Comparative Study on Financial Performance of Hotel
Industry in Pakistan (Sarena Hotel & Marriott Hotel), Journal of Tourism, Hospitality and
Sports, 8, pp. 42-54.
[22] Karkacıer, O., Yazgan, A. E. (2017) Turizm Sektöründe Gri İlişkisel Analzi (GİA) Yöntemiyle
Finansal Performans Değerlemesi, Selçuk Üniversitesi Sosyal Bilimler Entitüsü Dergisi,(37),
pp.154-162.
[23] Erdoğan, M., Yamaltdınova, A. (2018) Borsa İstanbul’a Kayıtlı Turizm Şirketlerinin 2011-2015
Dönemi Finansal Performanslarının TOPSİS ile Analizi, Optimum Journal of Economics and
Management Sciences, 5(1), pp.19-36.
[24] Ali, M., Eyduran, E., Tariq, M.M., Tirink, C., Abbas, F., Bajwa, M.A., Baloch, M.H., Nizamani,
A.H., Waheed, A., Awan, M.A., Shah, S.H., Ahmad, Z. and Jan, S., 2015. Comparison of artificial
neural network and decision tree algorithms used for predicting live weight at post weaning
period from some biometrical characteristics in Harnai sheep. Pakistan J. Zool., 47: 1579-1585.
[25] Akin, M., Hand, C., Eyduran, E. and Reed, B.M., 2018. Predicting minor nutrient requirements
of hazelnut shoot cultures using regression trees. Pl. Cell Tiss. Cult., 132: 545:559.[25]
[26] Breiman, L., Friedman, J.H., Olshen, R.A. and Stone, C.I., 1984. Classification and regression
trees. Wadsworth, Belmont, California, USA.
[27] Friedman, J.H. 1991 Multivariate adaptive regression splines, The Annals of Statistics, 19 (1991),
pp. 1-141.
[28] Zhang, W., Goh, A.T.C., 2016 Multivariate Adaptive Regression Splines and Neural Network
Models For Prediction of Pile Drivability, Geoscience Frontiers, 7, pp. 45-52.
[29] Grzesiak, W., Zaborski, D., 2012 Examples of The Use of Data Mining Methods in Animal
Breeding. in: Data Mining Applications in Engineering and Medicine (ed. A. Karahoca), In-
Tech, Rijeka, Croatia, pp. 303-324. https://doi.org/10.5772/50893
[30] Kornacki, J. and Ćwik, J., 2005 Statistical Learning Systems, WNT, Warsaw, Poland.
[31] Milborrow, S. 2018 Notes on the earth package. http://www.milbo.org/doc/earth-notes.pdf pp:1-
64.
[32] IBM Corp. Released 2015 IBM SPSS Statistics for Windows, Version 23.0. Armonk, NY: IBM
Corp.
[33] Milborrow, S 2011 Derived from mda:mars by T. Hastie and R. Tibshirani. earth: Multivariate
Adaptive Regression Splines, 2011, R package.
[34] R Core Team., 2014 R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, 2014. http://www.R-project.org.
Çöllü_altin_akgün_eyduran_assessment_of_factors__affecting_financial_performance__of_tourism_companies_in_bist_by_means_pp_425-440.pdf | |
File Size: | 538 kb |
File Type: |
Association of Economists and Managers of the Balkans
- UdEkoM Balkan -
179 Ustanicka St, 11000 Belgrade, Republic of Serbia
E-mail: [email protected]
www.udekom.org.rs
- UdEkoM Balkan -
179 Ustanicka St, 11000 Belgrade, Republic of Serbia
E-mail: [email protected]
www.udekom.org.rs
Tel. +381 62 812 5779
VAT number: 108747027
Registration number.: 28157347
Registration number.: 28157347