UDEKOM BALKAN
  • Home
  • About us
    • Objectives
    • Institutions >
      • Assembly
      • Steering Committee
      • Council
    • Activities
    • Statute
  • Membership
    • Application
    • Membership procedure
  • Conferences
    • LIMEN 2015
    • ERAZ 2015
    • HR conference 2014
  • Courses
  • Publications
  • Contact
Srpski

4th International Thematic Monograph - Modern Management Tools and Economy of Tourism Sector in Present Era

Picture

ANALYSIS OF PUBLIC STANCE ON TOURISM DESTINATIONS IN SREM/SRIJEM REGION

Olivera Grljević
University of Novi Sad, Faculty of Economics in Subotica, Segedinski put 9-11, Subotica, Serbia

Saša Bošnjak
University of Novi Sad, Faculty of Economics in Subotica, Segedinski put 9-11, Subotica, Serbia

Veselin Pavlićević
University of Novi Sad, Faculty of Economics in Subotica, Segedinski put 9-11, Subotica, Serbia

Nataša Pavlović
Turism Organisation of Vojvodina, Bulevar Mihajla Pupina 6/IV, Novi Sad, Serbia

DOI:   ​​https://doi.org/10.31410/tmt.2019.267
​
4th International Thematic Monograph -   Modern Management Tools and Economy of Tourism Sector in Present Era, Belgrade, 2019,   Published by:  Association of Economists and Managers of the Balkans in cooperation with the Faculty of Tourism and Hospitality, Ohrid, North Macedonia;   ISSN 2683-5673,  ISBN 978-86-80194-29-5;   Editors:   Vuk Bevanda, associate professor, Faculty of Social Sciences, Belgrade, Serbia;   Snežana Štetić, full time professor, The College of Tourism, Belgrade, Serbia,   Printed by:  SKRIPTA International, Belgrade

Abstract: Online reviews posted on social media are a rich source of the customers’ voice. In this
chapter, online reviews about various tourism destinations and attractions in Srem/Srijem region are
used to analyze public stance and to uncover sources of satisfaction and dissatisfaction of visitors.
Online reviews as unstructured data cannot be directly used for analysis, but require extensive data
transformation and preparation which is done through annotation of data. Annotation is a process
of enrichment of texts with specific meta-data. In presented research during the annotation process,
the dataset, i.e. the corpus of collected reviews was labeled with information on sentiment, aspects,
discourse functions, and information on a function different words have in expressions of opinion,
sentiment or attitude within a review. The authors present their approach to annotation, the evaluation
of the quality of conducted work, as well as the analysis of the resulting dataset, i.e. annotated corpus.

Keywords: Online reviews, User-generated content, Annotation, Corpus development, Corpus analysis,
Srem/Srijem region.

​REFERENCES

​​Baeza-Yates, R., & Ribeiro-Neto, B. (1999). Modern Information Retrieval. Addison-Wesley Professional.
Berthon, P. R., Pitt, L. F., Plangger, K., & Shapiro, D. (2012). Marketing meets Web 2.0, social media,
and creative consumers: Implications for international marketing strategy. Business Horizons,
55 (3), 261-271.
Bollen, J., Mao, H., & Zeng, X.J. (2011). Twitter mood predicts the stock market. Journal of Computational
Science, 2(1), 1-8.
Broß, J. (2013). Aspect-oriented sentiment analysis of customer reviews using distant supervision
techniques. Berlin: Freie Universität Berlin PhD thesis.
Chung, S.F. (2011). Uses of term- in Malay: A corpus-based study. Journal of Pragmatics, 43(3), 799-
813. doi: 10.1016/j.pragma.2010.10.004
Dalal, M.K., & Zaveri, M.A. (2014). Opinion Mining from Online User Reviews Using Fuzzy Linguistic
Hedges. Applied Computational Intelligence and Soft Computing, Article ID 735942, 9
pages. doi:10.1155/2014/735942.
D’Avanzo, E., & Pilato, G. (2015). Mining social network users’ opinions to aid buyers’ shopping
decisions. Computers in Human Behavior, 51, 1284–1294.
Dave, K., Lawrence, S., & Pennock, D.M. (2003). Mining the Peanut Gallery: Opinion Extraction
and Semantic Classification of Product Reviews. Paper presented at the 12th international conference
on World Wide Web, Budapest, Hungary, 20-24 May.
Fleiss, J. L. (1971). Measuring nominal scale agreement among many raters. Psychological Bulletin,
76(5), 378-82.
Fleiss, J. L., Levin, B., & Paik, M.C. (2003). Statistical Methods for Rates and Proportions. Wiley.
Ganu, G., Elhadad, N., & Marian, A. (2009). Beyond the stars: Improving rating predictions using
Review Text Content. Paper presented at the 12th International Workshop on the Web and Databases
(WebDB 2009), 9, 1-6. Providence, Rhode Island, USA, 28 June.
Garrote, M., Kimura, C., Matsui, K., Sandoval, M.A., & Takamori, E. (2013). C-ORAL-JAPON:
Corpus of Spontaneous Spoken Japanese. Corpus Linguistics and Linguistic Theory, 11(2), 373-
392. doi: 10.1515/cllt-2013-0004.
Gligorijevic, B., & Luck, E. (2012). Engaging Social Customers –Influencing New Marketing Strategies
for Social Media Information Sources. In Contemporary Research on E-business Technology
and Strategy (pp. 25-40). Springer Berlin Heidelberg.
González, A.O. & Ramos, A.M. (2013). A Comparative Study of Collocations in a Native Corpus and
a Learner Corpus of Spanish. Procedia - Social and Behavioral Sciences, 95(2013), 563-570.
Gruen, T. W., Osmonbekov, T., & Czaplewski, A. J. (2006). eWOM: The impact of customer-to-customer
online know-how exchange on customer value and loyalty. Journal of Business Research,
59(4), 449-456.
Hammond, M. (2015). Predicting the gender of Welsh nouns. Corpus Linguistics and Linguistic Theory,
12(2), 221-261. doi: 10.1515/cllt-2015-0001.
Henricson, S., & Nelson, M. (2017). Giving and receiving advice in higher education. Comparing
Sweden-Swedish and Finland-Swedish supervision. Journal of Pragmatics, 109, 105-120. doi:
https://doi.org/10.1016/j.pragma.2016.12.013.
Hovy, E., & Lavid, J. (2010). Towards a ‘Science’ of Corpus Annotation: A New Methodological
Challenge for Corpus Linguistics. International Journal of Translation, 22, 13-36.
Hu, M. & Liu, B. (2004). Mining and summarizing customer reviews. Paper presented in the Proceedings
of the 10th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ‘04, 168-177, Seattle, WA, USA, 22-25 August.
Iosif, E., Klasinas, I., Athanasopoulou, G., Palogiannidi, E., Georgiladakis, S., Louka, K., & Potamianos,
A. (2018). Speech understanding for spoken dialogue systems: From corpus harvesting
to grammar rule induction. Computer Speech and Language, 47, 272-297. doi: https://doi.
org/10.1016/j.csl.2017.08.002.
Iruskieta, M., Ilarraza deDiaz, A., & Lersundi, M. (2013). Establishing criteria for RST-based discourse
segmentation and annotation for texts in Basque. Corpus Linguistics and Linguistic
Theory, 11(2), 303-334. doi:10.1515/cllt-2013-0008.
Kessler, J.S., Eckert, M., Clark, L., & Nicolov, N. (2010). The 2010 ICWSM JDPA sentiment corpus
for the automotive domain. Paper presented at the 4th International AAAI Conference on Weblogs
and Social Media Data Workshop Challenge (ICWSM-DWC 2010), Washington, DC,
USA, 23-26 May.
Kessler, J. S., & Nicolov, N. (2009). Targeting Sentiment Expressions through Supervised Ranking
of Linguistic Configurations. Proceedings of the Third International AAAI Conference on Weblogs
and Social Media, (pp. 90-7).
Kim, J., Choi, D., Hwang M., & Kim, P. (2014). Analysis on Smartphone Related Twitter Reviews
by Using Opinion Mining Techniques. Advanced Approaches to Intelligent Information and
Database Systems, Studies in Computational Intelligence, 551, 205-212.
Landis, R.J., & Koch, G.G. (1977). The measurement of observer agreement for categorical data.
Biometrics, 33(1), 159-74.
Lei, S., & Law, R. (2015). Content Analysis of TripAdvisor Reviews on Restaurants: A Case Study
of Macau. Journal of tourism, 16(1), 17-28.
Lin, Y.L. (2017). Co-occurrence of speech and gestures: A multimodal corpus linguistic approach
to intercultural interaction. Journal of Pragmatics, 117, 155-167. doi: https://doi.org/10.1016/j.
pragma.2017.06.014.
Liu, B. (2012). Sentiment Analysis and Opinion Mining. Morgan & Claypool Publishers.
Liu, Y., X. Huang, A., & Yu, X. (2007). ARSA: A Sentiment-Aware Model for Predicting Sales Performance
Using Blogs. Paper presented at the SIGIR’07, 607-614, Amsterdam, Netherlands,
23-27 July.
Öğüt, H., & Onur, T.B.K. (2012). The influence of internet customer reviews on the online sales and
prices in hotel industry, The Service Industries Journal, 32(2), 197 – 214.
Pang, B., & Lee, L. (2008). Opinion Mining and Sentiment Analysis. Foundations and Trends in
Information Retrieval, 2(1-2), 1-135.
Pang, B., Lee, L., & Vaithyanathan, S. (2002). Thumbs up?: Sentiment classification using machine
learning techniques. Paper presented at the ACL-02 Conference on Empirical Methods in Natural
Language Processing, 10, 79-86, University of Pennsylvania, Philadelphia, PA, USA, 6-7
July.
Park, D.-H., Lee, J., & Han, I. (2007). The Effect of On-Line Consumer Reviews on Consumer Purchasing
Intention: The Moderating Role of Involvement. International Journal of Electronic
Commerce, 11 (4), 125-148.
Park, S., Lee, W., & Moon, I.-C. (2015). Efficient extraction of domain specific sentiment lexicon
with active learning. Pattern Recognition Letters, 56, 38-44.
Pitt, L. F., Berthon, P. R., Watson, R. T., & Zinkhan, G. M. (2002). The Internet and the birth of real
consumer power. Business Horizons, 45(4), 7-14.
Pustejovsky, J., & Moszkowicz, J. (2012). The Role of Model Testing in Standards Development: The
Case of ISO-Space. Proceedings of the Eight International Conference on Language Resources
and Evaluation (LREC’12) (pp. 3060-3063). Istanbul, Turkey: European Language Resources
Association (ELRA).
​Pustejovsky, J., & Stubbs, A. (2012). Natural Language Annotation for Machine Learning - a Guide
to Corpus-Building for Applications. O’Reilly Media Inc.
Reinstein, D.A., & Snyder, C.M. (2005). The influence of expert reviews on consumer demand for
experience goods: A case study of movie reviews. Journal of Industrial Economics, 53, 27-51.
Rumenapp, J.C. (2016). Analyzing discourse analysis: Teachers’ views of classroom discourse and
student identity. Linguistics and Education, 35, 26-36. doi: 10.1016/j.linged.2016.04.002.
Stubbs, A. (2012). Developing Specifications for Light Annotation Tasks in the Biomedical Domain.
Proceedings of the Third Workshop on Building and Evaluating Resources for Biomedical Text
Mining, (p. 71). Istanbul, Turkey.
Tang, X. (2016). Lexeme-based collexeme analysis with DepCluster. Corpus Linguistics and Linguistic
Theory, 13(1), 165-202. doi:10.1515/cllt-2015-0007.
Van de Kauter, M., Breesch, D., & Hoste, V. (2015). Fine-grained analysis of explicit and implicit
sentiment in financial news articles. Expert Systems with Applications, 42, 4999–5010.
Vass, H. (2017). Lexical verb hedging in legal discourse: The case of law journal articles and Supreme
Court majority and dissenting opinions. English for Specific Purposes, 48(2017), 17-31.
Wachsmuth, H., Trenkmann, M., Stein, B., Engels, G., & Palakarska, T. (2014). A Review Corpus for
Argumentation Analysis. Paper presented at the15th International Conference on Computational
Linguistics and Intelligent Text Processing, Kathmandu, Nepal, 06-12 April.
Wiebe, J., Wilson, T., & Cardie, C. (2005). Annotating expressions of opinions and emotions in language.
Language Resources and Evaluation, 39(2-3), 165-210.
Wissler, L., Almashraee, M., Monett, D., & Paschke, A. (2014). The Gold Standard in Corpus Annotation.
Proceedings of 5th IEEE Germany Student Conference, IEEE GSC 2014, Passau,
Germany.
Yang, C.-S., Chen, C.-H., & Chang, P.-C. (2015). Harnessing consumer reviews for marketing intelligence:
a domain-adapted sentiment classification approach. Information Systems and e-Business
Management, 13 (3), 403-419.
4th_international_thematic_monograph_2019_pp._267-289.pdf
File Size: 1911 kb
File Type: pdf
Download File


Picture
Association of Economists and Managers of the Balkans
- UdEkoM Balkan -
179 Ustanicka St, 11000 Belgrade, Republic of Serbia
E-mail: [email protected]
www.udekom.org.rs
Tel. +381 62 812 5779
VAT number: 108747027
Registration number.: 28157347
© COPYRIGHT 2014-2024. ALL RIGHTS RESERVED.
  • Home
  • O nama
    • Ciljevi
    • Organi >
      • Skupština
      • Upravni odbor
      • Savet
    • Aktivnosti
    • Partneri
    • Statut
  • Članstvo
    • Pristupnica
    • Procedura učlanjenja
    • Visina članarine
    • Članovi
  • Konferencije
    • EMAN
    • LIMEN
    • ERAZ
    • ITEMA
  • Seminari
  • Kontakt