THE USE OF GEOLOCATION FOR COMPETITION ANALYSIS OF DESTINATIONS: APPLICATION TO THE HOTEL SUPPLY IN BARCELONA
María D. Illescas-Manzano - University of Almería, st Sacramento (Almería) Spain
Sergio Martínez-Puertas - University of Almería, st Sacramento (Almería) Spain
Manuel Sánchez-Pérez - University of Almería, st Sacramento (Almería) Spain
DOI: https://doi.org/10.31410/tmt.2020.585
5th International Thematic Monograph - Modern Management Tools and Economy of Tourism Sector in Present Era, Belgrade, 2020, Published by: Association of Economists and Managers of the Balkans in cooperation with the Faculty of Tourism and Hospitality, Ohrid, North Macedonia; ISSN 2683-5673, ISBN 978-86-80194-42-4; Editors: Vuk Bevanda, associate professor, Faculty of Social Sciences, Belgrade, Serbia; Snežana Štetić, full time professor, The College of Tourism, Belgrade, Serbia, Printed by: SKRIPTA International, Belgrade
Abstract: Geolocalization and the use of geographic information systems (GIS) have become fundamental tools in many disciplines because they can link databases and view the geographic information provided by these databases. Within the hotel context, geolocation and GIS can be used as tools that from a management perspective facilitate the evaluation of the competitive level existing in a tourist destination and from a consumer point of view facilitate their choice. This chapter tries to show the usefulness of geolocation through its application in the evaluation of the hotel supply in Barcelona (Spain).
Keywords: Tourist destination, Geolocation, Geographic Information Systems, Competition, Location.
REFERENCES
Abrate, G., Fraquelli, G., & Viglia, G. (2012). Dynamic pricing strategies: evidence from European
hotels. International Journal of Hospitality Management, 31(1), 160-168. https://doi.
org/10.1016/j.ijhm.2011.06.003
Appelhans, T., Detsch, F., Reudenbach, C., & Woellauer, S., (2019). mapview: Interactive
Viewing of Spatial Data in R. R package version 2.7.0. https://CRAN.R-project.org/package=
mapview
Balaguer, J., & Pernías, J.C. (2013). Relationship between spatial agglomeration and hotel prices.
Evidence from business and tourism consumers. Tourism Management, 36, 391-400.
https://doi.org/10.1016/j.tourman.2012.10.004
Baum, J. A., & Haveman, H. A. (1997). Love thy neighbor? Differentiation and agglomeration in
the Manhattan hotel industry, 1898-1990. Administrative Science Quarterly, 42(2), 304-338.
https://doi.org/10.2307/2393922
Baum, J.A., & Mezias, S.J. (1992). Localized competition and organizational failure in the Manhattan
hotel industry, 1898-1990. Administrative Science Quarterly, 37(4), 580-604. https://
doi.org/10.2307/2393473
Baviera-Puig, A., Buitrago-Vera, J., & Escriba-Perez, C. (2016). Geomarketing models in supermarket
location strategies. Journal of Business Economics and Management, 17(6), 1205-
1221. https://doi.org/10.3846/16111699.2015.1113198
Becerra, M., Santaló, J., & Silva, R. (2013). Being better vs. being different: Differentiation,
competition, and pricing strategies in the Spanish hotel industry. Tourism Management, 34,
71-79. https://doi.org/10.1016/j.tourman.2012.03.014
Bradley, A. V., Thornes, J. E., Chapman, L., Unwin, D., & Roy, M. (2002). Modelling spatial and
temporal road thermal climatology in rural and urban areas using a GIS. Climate Research,
22(1), 41-55.
Chisholm, D.C., McMillan, M.S., & Norman, G. (2010). Product differentiation and film- programming
choice: do first-run movie theatres show the same films? Journal of Cultural
Economics, 34, 131-145. https://doi.org/10.1007/s10824-010-9118-y
Chu, R. K., & Choi, T. (2000). An importance-performance analysis of hotel selection factors
in the Hong Kong hotel industry: a comparison of business and leisure travellers. Tourism
Management, 21(4), 363-377. https://doi.org/10.1016/S0261-5177(99)00070-9
Chung, W., & Kalnins, A. (2001). Agglomeration effects and performance: a test of the Texas
lodging industry. Strategic Management Journal, 22(10), 969-988. https://doi.org/10.1002/
smj.178
Daniels, M.J. (2007). Central place theory and sport tourism impacts. Annals of Tourism Research,
34(2), 332-347. https://doi.org/10.1016/j.annals.2006.09.004
Deephouse, D. L. (1999). To be different, or to be the same? It’s a question (and theory) of
strategic balance. Strategic Management Journal, 20(2), 147-166. https://doi.org/10.1002/
(SICI)1097-0266(199902)20:2%3C147::AID-SMJ11%3E3.0.CO;2-Q
Dušek, R., Štumpf, P., & Vojtko, V. (2019). Geomarketing: Tool for consumer spending estimation
in the Czech tourism & hospitality market. Global Business & Finance Review
(GBFR), 24(1), 14-26. http://dx.doi.org/10.17549/gbfr.2019.24.1.14
European Cities Marketing, 2018. European Cities Marketing Benchmarking Report 2018.
https://www.europeancitiesmarketing.com/european-cities-marketing-benchmarking-report-
2018-shows-the-continuous-growth-of-european-city-tourism/
Fang, L., Li, H., & Li, M. (2019). Does hotel location tell a true story? Evidence from geographically
weighted regression analysis of hotels in Hong Kong. Tourism Management, 72, 78-
91. https://doi.org/10.1016/j.tourman.2018.11.010
Fang, L., Xie, Y., Yao, S., & Liu, T. (2020). Agglomeration and/or differentiation at regional
scale? Geographic spatial thinking of hotel distribution–a case study of Guangdong, China.
Current Issues in Tourism, 1-17. https://doi.org/10.1080/13683500.2020.1792852
Feng, R., & Morrison, A. M. (2002). GIS applications in tourism and hospitality marketing: A
case in Brown County, Indiana. Anatolia, 13(2), 127-143. https://doi.org/10.1080/13032917.
2002.9687129
Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2002). Geographically weighted regression:
the analysis of spatially varying relationships. John Wiley & Sons.
Frankenberger, J. R., Brooks, E. S., Walter, M. T., Walter, M. F., & Steenhuis, T. S. (1999). A GISbased
variable source area hydrology model. Hydrological processes, 13(6), 805-822. https://
doi.org/10.1002/(SICI)1099-1085(19990430)13:6%3C805::AID-HYP754%3E3.0.CO;2-M
García-Palomares, J. C., Gutiérrez, J., & Mínguez, C. (2015). Identification of tourist hot spots
based on social networks: A comparative analysis of European metropolises using photo-
sharing services and GIS. Applied Geography, 63, 408-417. https://doi.org/10.1016/j.apgeog.
2015.08.002
González-Ramiro, A., Gonçalves, G., Sánchez-Ríos, A., & Jeong, J. S. (2016). Using a VGI and
GIS-based multicriteria approach for assessing the potential of rural tourism in Extremadura
(Spain). Sustainability, 8(11), 1144. https://doi.org/10.3390/su8111144
Guarda, T., Augusto, M. F., & Lopes, I. (2019, June). Geographic market intelligence as a
competitive advantage. Paper presented at 2019 14th Iberian Conference on Information
Systems and Technologies (CISTI), Coimbra, Portugal, 2019, (pp. 1-5). IEEE. https://doi.
org/10.23919/CISTI.2019.8760856
Hess, R. L., Rubin, R. S., & West Jr, L. A. (2004). Geographic information systems as a marketing
information system technology. Decision Support Systems, 38(2), 197-212. https://doi.
org/10.1016/S0167-9236(03)00102-7
Jin, C., Xu, J., & Huang, Z. (2019). Spatiotemporal analysis of regional tourism development:
A semiparametric Geographically Weighted Regression model approach. Habitat International,
87, 1-10. https://doi.org/10.1016/j.habitatint.2019.03.011
Khalil, S. (2018). Rcrawler: Web Crawler and Scraper. R package version 0.1.9-1. https://
CRAN.R-project.org/package=Rcrawler
Khalil, S., & Fakir, M. (2017). RCrawler: An R package for parallel web crawling and scraping.
SoftwareX, 6, 98-106. https://doi.org/10.1016/j.softx.2017.04.004
Kim, J., Jang, S., Kang, S., & Kim, S. J. (2020). Why are hotel room prices different? Exploring
spatially varying relationships between room price and hotel attributes. Journal of Business
Research, 107, 118-129. https://doi.org/10.1016/j.jbusres.2018.09.006
Kim, M., Roehl, W., & Lee, S. K. (2020). Different from or similar to neighbors? An investigation
of hotels’ strategic distances. Tourism Management, 76, 103-960. https://doi.org/10.1016/j.
tourman.2019.103960
King, L. (1984). Central Place Theory. Beverly Hills: Sage.
Kitchin, R. (2013). Big data and human geography: Opportunities, challenges and risks. Dialogues
in Human Geography, 3(3), 262-267. https://doi.org/10.1177/2043820613513388
Latinopoulos, D. (2018). Using a spatial hedonic analysis to evaluate the effect of sea view on
hotel prices. Tourism Management, 65, 87-99. https://doi.org/10.1016/j.tourman.2017.09.019
Lee, S.K. (2015). Quality differentiation and conditional spatial price competition among hotels.
Tourism Management, 46, 114-122. https://doi.org/10.1016/j.tourman.2014.06.019
Lee, S. K., & Jang, S. (2015). Conditional agglomeration externalities in lodging markets. Journal of
Hospitality y Tourism Research, 39, 540-559. https://doi.org/10.1177%2F1096348013491605
Luo, H., & Yang, Y. (2016). Intra-metropolitan location choice of star-rated and non-rated budget
hotels: The role of agglomeration economies. International Journal of Hospitality Management,
59, 72-83. https://doi.org/10.1016/j.ijhm.2016.09.007
Makadok, R., & Ross, D. G. (2013). Taking industry structuring seriously: A strategic perspective
on product differentiation. Strategic Management Journal, 34(5), 509-532. https://doi.
org/10.1002/smj.2033
Mango, J., Çolak, E., & Li, X. (2020). Web-based GIS for managing and promoting tourism in
sub-Saharan Africa. Current Issues in Tourism, 1-17. https://doi.org/10.1080/13683500.201
9.1711028
McCann, B.T., & Folta, T.B. (2008). Location matters: where we have been and where we
might go in agglomeration research. Journal of Management, 34(3), 532-565. https://doi.
org/10.1177%2F0149206308316057
Nicholls, S., & Kim, J. (2019). Spatial is special: The need to consider spatial effects in leisure
research. Leisure Sciences, 1-21. https://doi.org/10.1080/01490400.2019.1600441
Ozimec, A. M., Natter, M., & Reutterer, T. (2010). Geographical information systems–based
marketing decisions: Effects of alternative visualizations on decision quality. Journal of
Marketing, 74(6), 94-110. https://doi.org/10.1509%2Fjmkg.74.6.94
Pawlicz, A., & Napierala, T. (2017). The determinants of hotel room rates: an analysis of the hotel
industry in Warsaw, Poland. International Journal of Contemporary Hospitality Management
29, 571-588. https://doi.org/10.1108/IJCHM-12-2015-0694
Pebesma, E. J. (2018). Simple features for R: Standardized support for spatial vector data. The R
Journal, 10(1), 439-446. https://doi.org/10.32614/RJ-2018-009
Roig-Tierno, N., Baviera-Puig, A., & Buitrago-Vera, J. (2013). Business opportunities analysis
using GIS: the retail distribution sector. Global Business Perspectives, 1(3), 226-238.
https://doi.org/10.1007/s40196-013-0015-6
Sánchez-Pérez, M., Illescas-Manzano, M. D., & Martínez-Puertas, S. (2019). Modeling hotel
room pricing: A multi-country analysis. International Journal of Hospitality Management,
79, 89-99. https://doi.org/10.1016/j.ijhm.2018.12.014
Sánchez-Pérez, M., Illescas-Manzano, M. D., & Martínez-Puertas, S. (2020). You’re the only
One, or Simply the Best. Hotels differentiation, competition, agglomeration, and pricing.
International Journal of Hospitality Management, 85, 102362. https://doi.org/10.1016/j.
ijhm.2019.102362
Shaked, A., & Sutton, J. (1982). Relaxing price competition through product differentiation. The
Review of Economic Studies, 49(1), 3-13. https://doi.org/10.2307/2297136
Silva, R. (2015). Multimarket contact, differentiation, and prices of chain hotels. Tourism Management,
48, 305-315. https://doi.org/10.1016/j.tourman.2014.11.006
Silva, R. (2016). Competition and demand effects of geographic distance to rivals. Service Industries
Journal, 36(1-2), 37-57. https://doi.org/10.1080/02642069.2016.1138470
Soler, I. P., & Gemar, G. (2018). Hedonic price models with geographically weighted regression:
An application to hospitality. Journal of Destination Marketing & Management, 9, 126-137.
https://doi.org/10.1016/j.jdmm.2017.12.001
Sui, D., & Goodchild, M. (2011). The convergence of GIS and social media: challenges for GIScience.
International Journal of Geographical Information Science, 25(11), 1737-1748. https://
doi.org/10.1080/13658816.2011.604636
Team R Core, 2020. R: A language and environment for statistical computing and graphics The
R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/.
Teixeira, S. (2018). Qualitative geographic information systems (GIS): An untapped research
approach for social work. Qualitative Social Work, 17(1), 9-23. https://doi.
org/10.1177%2F1473325016655203
Urtasun, A., & Gutiérrez, I. (2017). Clustering benefits for upscale urban hotels. International
Journal of Contemporary Hospitality Management, 29(5), 1426-1446. https://doi.
org/10.1108/IJCHM-10-2015-0583
World Economic Forum (2019). The Travel and Tourism Competitiveness Report 2019. https://
www.weforum.org/reports/the-travel-tourism-competitiveness-report-2019
Yang, Y., Luo, H., & Law, R. (2014). Theoretical, empirical, and operational models in hotel location
research. International Journal of Hospitality Management, 36, 209-220. https://doi.
org/10.1016/j.ijhm.2013.09.004
Yang, Y., Mueller, N.J., & Croes, R.R. (2016). Market accessibility and hotel prices in the Caribbean:
the moderating effect of quality-signaling factors. Tourism Management, 56, 40-51.
https://doi.org/10.1016/j.tourman.2016.03.021
Yang, Y., Tang, J., Luo, H., & Law, R. (2015). Hotel location evaluation: A combination of machine
learning tools and web GIS. International Journal of Hospitality Management, 47,
14-24. https://doi.org/10.1016/j.ijhm.2015.02.008
Yang, Y., Wong, K. K., & Wang, T. (2012). How do hotels choose their location? Evidence from
hotels in Beijing. International Journal of Hospitality Management, 31(3), 675-685. https://
doi.org/10.1016/j.ijhm.2011.09.003
Zhang, Z., Ye, Q., & Law, R. (2011a). Determinants of hotel room price: an exploration of travelers
´ hierarchy of accommodation needs. International Journal of Contemporary Hospitality
Management, 23(7), 972-981. https://doi.org/10.1108/09596111111167551
Zhang, H., Zhang, J., Lu, S., Cheng, S., & Zhang, J. (2011b). Modeling hotel room price with geographically
weighted regression. International Journal of Hospitality Management, 30(4),
1036-1043. https://doi.org/10.1016/j.ijhm.2011.03.010
Zhu, A. X., Hudson, B., Burt, J., Lubich, K., & Simonson, D. (2001). Soil mapping using GIS,
expert knowledge, and fuzzy logic. Soil Science Society of America Journal, 65(5), 1463-
1472. https://doi.org/10.2136/sssaj2001.6551463x
Keywords: Tourist destination, Geolocation, Geographic Information Systems, Competition, Location.
REFERENCES
Abrate, G., Fraquelli, G., & Viglia, G. (2012). Dynamic pricing strategies: evidence from European
hotels. International Journal of Hospitality Management, 31(1), 160-168. https://doi.
org/10.1016/j.ijhm.2011.06.003
Appelhans, T., Detsch, F., Reudenbach, C., & Woellauer, S., (2019). mapview: Interactive
Viewing of Spatial Data in R. R package version 2.7.0. https://CRAN.R-project.org/package=
mapview
Balaguer, J., & Pernías, J.C. (2013). Relationship between spatial agglomeration and hotel prices.
Evidence from business and tourism consumers. Tourism Management, 36, 391-400.
https://doi.org/10.1016/j.tourman.2012.10.004
Baum, J. A., & Haveman, H. A. (1997). Love thy neighbor? Differentiation and agglomeration in
the Manhattan hotel industry, 1898-1990. Administrative Science Quarterly, 42(2), 304-338.
https://doi.org/10.2307/2393922
Baum, J.A., & Mezias, S.J. (1992). Localized competition and organizational failure in the Manhattan
hotel industry, 1898-1990. Administrative Science Quarterly, 37(4), 580-604. https://
doi.org/10.2307/2393473
Baviera-Puig, A., Buitrago-Vera, J., & Escriba-Perez, C. (2016). Geomarketing models in supermarket
location strategies. Journal of Business Economics and Management, 17(6), 1205-
1221. https://doi.org/10.3846/16111699.2015.1113198
Becerra, M., Santaló, J., & Silva, R. (2013). Being better vs. being different: Differentiation,
competition, and pricing strategies in the Spanish hotel industry. Tourism Management, 34,
71-79. https://doi.org/10.1016/j.tourman.2012.03.014
Bradley, A. V., Thornes, J. E., Chapman, L., Unwin, D., & Roy, M. (2002). Modelling spatial and
temporal road thermal climatology in rural and urban areas using a GIS. Climate Research,
22(1), 41-55.
Chisholm, D.C., McMillan, M.S., & Norman, G. (2010). Product differentiation and film- programming
choice: do first-run movie theatres show the same films? Journal of Cultural
Economics, 34, 131-145. https://doi.org/10.1007/s10824-010-9118-y
Chu, R. K., & Choi, T. (2000). An importance-performance analysis of hotel selection factors
in the Hong Kong hotel industry: a comparison of business and leisure travellers. Tourism
Management, 21(4), 363-377. https://doi.org/10.1016/S0261-5177(99)00070-9
Chung, W., & Kalnins, A. (2001). Agglomeration effects and performance: a test of the Texas
lodging industry. Strategic Management Journal, 22(10), 969-988. https://doi.org/10.1002/
smj.178
Daniels, M.J. (2007). Central place theory and sport tourism impacts. Annals of Tourism Research,
34(2), 332-347. https://doi.org/10.1016/j.annals.2006.09.004
Deephouse, D. L. (1999). To be different, or to be the same? It’s a question (and theory) of
strategic balance. Strategic Management Journal, 20(2), 147-166. https://doi.org/10.1002/
(SICI)1097-0266(199902)20:2%3C147::AID-SMJ11%3E3.0.CO;2-Q
Dušek, R., Štumpf, P., & Vojtko, V. (2019). Geomarketing: Tool for consumer spending estimation
in the Czech tourism & hospitality market. Global Business & Finance Review
(GBFR), 24(1), 14-26. http://dx.doi.org/10.17549/gbfr.2019.24.1.14
European Cities Marketing, 2018. European Cities Marketing Benchmarking Report 2018.
https://www.europeancitiesmarketing.com/european-cities-marketing-benchmarking-report-
2018-shows-the-continuous-growth-of-european-city-tourism/
Fang, L., Li, H., & Li, M. (2019). Does hotel location tell a true story? Evidence from geographically
weighted regression analysis of hotels in Hong Kong. Tourism Management, 72, 78-
91. https://doi.org/10.1016/j.tourman.2018.11.010
Fang, L., Xie, Y., Yao, S., & Liu, T. (2020). Agglomeration and/or differentiation at regional
scale? Geographic spatial thinking of hotel distribution–a case study of Guangdong, China.
Current Issues in Tourism, 1-17. https://doi.org/10.1080/13683500.2020.1792852
Feng, R., & Morrison, A. M. (2002). GIS applications in tourism and hospitality marketing: A
case in Brown County, Indiana. Anatolia, 13(2), 127-143. https://doi.org/10.1080/13032917.
2002.9687129
Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2002). Geographically weighted regression:
the analysis of spatially varying relationships. John Wiley & Sons.
Frankenberger, J. R., Brooks, E. S., Walter, M. T., Walter, M. F., & Steenhuis, T. S. (1999). A GISbased
variable source area hydrology model. Hydrological processes, 13(6), 805-822. https://
doi.org/10.1002/(SICI)1099-1085(19990430)13:6%3C805::AID-HYP754%3E3.0.CO;2-M
García-Palomares, J. C., Gutiérrez, J., & Mínguez, C. (2015). Identification of tourist hot spots
based on social networks: A comparative analysis of European metropolises using photo-
sharing services and GIS. Applied Geography, 63, 408-417. https://doi.org/10.1016/j.apgeog.
2015.08.002
González-Ramiro, A., Gonçalves, G., Sánchez-Ríos, A., & Jeong, J. S. (2016). Using a VGI and
GIS-based multicriteria approach for assessing the potential of rural tourism in Extremadura
(Spain). Sustainability, 8(11), 1144. https://doi.org/10.3390/su8111144
Guarda, T., Augusto, M. F., & Lopes, I. (2019, June). Geographic market intelligence as a
competitive advantage. Paper presented at 2019 14th Iberian Conference on Information
Systems and Technologies (CISTI), Coimbra, Portugal, 2019, (pp. 1-5). IEEE. https://doi.
org/10.23919/CISTI.2019.8760856
Hess, R. L., Rubin, R. S., & West Jr, L. A. (2004). Geographic information systems as a marketing
information system technology. Decision Support Systems, 38(2), 197-212. https://doi.
org/10.1016/S0167-9236(03)00102-7
Jin, C., Xu, J., & Huang, Z. (2019). Spatiotemporal analysis of regional tourism development:
A semiparametric Geographically Weighted Regression model approach. Habitat International,
87, 1-10. https://doi.org/10.1016/j.habitatint.2019.03.011
Khalil, S. (2018). Rcrawler: Web Crawler and Scraper. R package version 0.1.9-1. https://
CRAN.R-project.org/package=Rcrawler
Khalil, S., & Fakir, M. (2017). RCrawler: An R package for parallel web crawling and scraping.
SoftwareX, 6, 98-106. https://doi.org/10.1016/j.softx.2017.04.004
Kim, J., Jang, S., Kang, S., & Kim, S. J. (2020). Why are hotel room prices different? Exploring
spatially varying relationships between room price and hotel attributes. Journal of Business
Research, 107, 118-129. https://doi.org/10.1016/j.jbusres.2018.09.006
Kim, M., Roehl, W., & Lee, S. K. (2020). Different from or similar to neighbors? An investigation
of hotels’ strategic distances. Tourism Management, 76, 103-960. https://doi.org/10.1016/j.
tourman.2019.103960
King, L. (1984). Central Place Theory. Beverly Hills: Sage.
Kitchin, R. (2013). Big data and human geography: Opportunities, challenges and risks. Dialogues
in Human Geography, 3(3), 262-267. https://doi.org/10.1177/2043820613513388
Latinopoulos, D. (2018). Using a spatial hedonic analysis to evaluate the effect of sea view on
hotel prices. Tourism Management, 65, 87-99. https://doi.org/10.1016/j.tourman.2017.09.019
Lee, S.K. (2015). Quality differentiation and conditional spatial price competition among hotels.
Tourism Management, 46, 114-122. https://doi.org/10.1016/j.tourman.2014.06.019
Lee, S. K., & Jang, S. (2015). Conditional agglomeration externalities in lodging markets. Journal of
Hospitality y Tourism Research, 39, 540-559. https://doi.org/10.1177%2F1096348013491605
Luo, H., & Yang, Y. (2016). Intra-metropolitan location choice of star-rated and non-rated budget
hotels: The role of agglomeration economies. International Journal of Hospitality Management,
59, 72-83. https://doi.org/10.1016/j.ijhm.2016.09.007
Makadok, R., & Ross, D. G. (2013). Taking industry structuring seriously: A strategic perspective
on product differentiation. Strategic Management Journal, 34(5), 509-532. https://doi.
org/10.1002/smj.2033
Mango, J., Çolak, E., & Li, X. (2020). Web-based GIS for managing and promoting tourism in
sub-Saharan Africa. Current Issues in Tourism, 1-17. https://doi.org/10.1080/13683500.201
9.1711028
McCann, B.T., & Folta, T.B. (2008). Location matters: where we have been and where we
might go in agglomeration research. Journal of Management, 34(3), 532-565. https://doi.
org/10.1177%2F0149206308316057
Nicholls, S., & Kim, J. (2019). Spatial is special: The need to consider spatial effects in leisure
research. Leisure Sciences, 1-21. https://doi.org/10.1080/01490400.2019.1600441
Ozimec, A. M., Natter, M., & Reutterer, T. (2010). Geographical information systems–based
marketing decisions: Effects of alternative visualizations on decision quality. Journal of
Marketing, 74(6), 94-110. https://doi.org/10.1509%2Fjmkg.74.6.94
Pawlicz, A., & Napierala, T. (2017). The determinants of hotel room rates: an analysis of the hotel
industry in Warsaw, Poland. International Journal of Contemporary Hospitality Management
29, 571-588. https://doi.org/10.1108/IJCHM-12-2015-0694
Pebesma, E. J. (2018). Simple features for R: Standardized support for spatial vector data. The R
Journal, 10(1), 439-446. https://doi.org/10.32614/RJ-2018-009
Roig-Tierno, N., Baviera-Puig, A., & Buitrago-Vera, J. (2013). Business opportunities analysis
using GIS: the retail distribution sector. Global Business Perspectives, 1(3), 226-238.
https://doi.org/10.1007/s40196-013-0015-6
Sánchez-Pérez, M., Illescas-Manzano, M. D., & Martínez-Puertas, S. (2019). Modeling hotel
room pricing: A multi-country analysis. International Journal of Hospitality Management,
79, 89-99. https://doi.org/10.1016/j.ijhm.2018.12.014
Sánchez-Pérez, M., Illescas-Manzano, M. D., & Martínez-Puertas, S. (2020). You’re the only
One, or Simply the Best. Hotels differentiation, competition, agglomeration, and pricing.
International Journal of Hospitality Management, 85, 102362. https://doi.org/10.1016/j.
ijhm.2019.102362
Shaked, A., & Sutton, J. (1982). Relaxing price competition through product differentiation. The
Review of Economic Studies, 49(1), 3-13. https://doi.org/10.2307/2297136
Silva, R. (2015). Multimarket contact, differentiation, and prices of chain hotels. Tourism Management,
48, 305-315. https://doi.org/10.1016/j.tourman.2014.11.006
Silva, R. (2016). Competition and demand effects of geographic distance to rivals. Service Industries
Journal, 36(1-2), 37-57. https://doi.org/10.1080/02642069.2016.1138470
Soler, I. P., & Gemar, G. (2018). Hedonic price models with geographically weighted regression:
An application to hospitality. Journal of Destination Marketing & Management, 9, 126-137.
https://doi.org/10.1016/j.jdmm.2017.12.001
Sui, D., & Goodchild, M. (2011). The convergence of GIS and social media: challenges for GIScience.
International Journal of Geographical Information Science, 25(11), 1737-1748. https://
doi.org/10.1080/13658816.2011.604636
Team R Core, 2020. R: A language and environment for statistical computing and graphics The
R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/.
Teixeira, S. (2018). Qualitative geographic information systems (GIS): An untapped research
approach for social work. Qualitative Social Work, 17(1), 9-23. https://doi.
org/10.1177%2F1473325016655203
Urtasun, A., & Gutiérrez, I. (2017). Clustering benefits for upscale urban hotels. International
Journal of Contemporary Hospitality Management, 29(5), 1426-1446. https://doi.
org/10.1108/IJCHM-10-2015-0583
World Economic Forum (2019). The Travel and Tourism Competitiveness Report 2019. https://
www.weforum.org/reports/the-travel-tourism-competitiveness-report-2019
Yang, Y., Luo, H., & Law, R. (2014). Theoretical, empirical, and operational models in hotel location
research. International Journal of Hospitality Management, 36, 209-220. https://doi.
org/10.1016/j.ijhm.2013.09.004
Yang, Y., Mueller, N.J., & Croes, R.R. (2016). Market accessibility and hotel prices in the Caribbean:
the moderating effect of quality-signaling factors. Tourism Management, 56, 40-51.
https://doi.org/10.1016/j.tourman.2016.03.021
Yang, Y., Tang, J., Luo, H., & Law, R. (2015). Hotel location evaluation: A combination of machine
learning tools and web GIS. International Journal of Hospitality Management, 47,
14-24. https://doi.org/10.1016/j.ijhm.2015.02.008
Yang, Y., Wong, K. K., & Wang, T. (2012). How do hotels choose their location? Evidence from
hotels in Beijing. International Journal of Hospitality Management, 31(3), 675-685. https://
doi.org/10.1016/j.ijhm.2011.09.003
Zhang, Z., Ye, Q., & Law, R. (2011a). Determinants of hotel room price: an exploration of travelers
´ hierarchy of accommodation needs. International Journal of Contemporary Hospitality
Management, 23(7), 972-981. https://doi.org/10.1108/09596111111167551
Zhang, H., Zhang, J., Lu, S., Cheng, S., & Zhang, J. (2011b). Modeling hotel room price with geographically
weighted regression. International Journal of Hospitality Management, 30(4),
1036-1043. https://doi.org/10.1016/j.ijhm.2011.03.010
Zhu, A. X., Hudson, B., Burt, J., Lubich, K., & Simonson, D. (2001). Soil mapping using GIS,
expert knowledge, and fuzzy logic. Soil Science Society of America Journal, 65(5), 1463-
1472. https://doi.org/10.2136/sssaj2001.6551463x
tmt.2020.585.pdf | |
File Size: | 3179 kb |
File Type: |
Association of Economists and Managers of the Balkans
- UdEkoM Balkan -
179 Ustanicka St, 11000 Belgrade, Republic of Serbia
E-mail: [email protected]
www.udekom.org.rs
- UdEkoM Balkan -
179 Ustanicka St, 11000 Belgrade, Republic of Serbia
E-mail: [email protected]
www.udekom.org.rs
Tel. +381 62 812 5779
VAT number: 108747027
Registration number.: 28157347
Registration number.: 28157347